Antagonism between phytohormone signalling underlies the variation in disease susceptibility of tomato plants under elevated CO2

نویسندگان

  • Shuai Zhang
  • Xin Li
  • Zenghui Sun
  • Shujun Shao
  • Lingfei Hu
  • Meng Ye
  • Yanhong Zhou
  • Xiaojian Xia
  • Jingquan Yu
  • Kai Shi
چکیده

Increasing CO2 concentrations ([CO2]) have the potential to disrupt plant-pathogen interactions in natural and agricultural ecosystems, but the research in this area has often produced conflicting results. Variations in phytohormone salicylic acid (SA) and jasmonic acid (JA) signalling could be associated with variations in the responses of pathogens to plants grown under elevated [CO2]. In this study, interactions between tomato plants and three pathogens with different infection strategies were compared. Elevated [CO2] generally favoured SA biosynthesis and signalling but repressed the JA pathway. The exposure of plants to elevated [CO2] revealed a lower incidence and severity of disease caused by tobacco mosaic virus (TMV) and by Pseudomonas syringae, whereas plant susceptibility to necrotrophic Botrytis cinerea increased. The elevated [CO2]-induced and basal resistance to TMV and P. syringae were completely abolished in plants in which the SA signalling pathway nonexpressor of pathogenesis-related genes 1 (NPR1) had been silenced or in transgenic plants defective in SA biosynthesis. In contrast, under both ambient and elevated [CO2], the susceptibility to B. cinerea highly increased in plants in which the JA signalling pathway proteinase inhibitors (PI) gene had been silenced or in a mutant affected in JA biosynthesis. However, plants affected in SA signalling remained less susceptible to this disease. These findings highlight the modulated antagonistic relationship between SA and JA that contributes to the variation in disease susceptibility under elevated [CO2]. This information will be critical for investigating how elevated CO2 may affect plant defence and the dynamics between plants and pathogens in both agricultural and natural ecosystems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multiple phytohormone signalling pathways modulate susceptibility of tomato plants to Alternaria alternata f. sp. lycopersici

Three phytohormone molecules - ethylene (ET), jasmonic acid (JA) and salicylic acid (SA) - play key roles in mediating disease response to necrotrophic fungal pathogens. This study investigated the roles of the ET, JA, and SA pathways as well as their crosstalk during the interaction between tomato (Solanum lycopersicum) plants and a necrotrophic fungal pathogen Alternaria alternata f. sp. lyco...

متن کامل

The Contrasting Effects of Elevated CO2 on TYLCV Infection of Tomato Genotypes with and without the Resistance Gene, Mi-1.2

Elevated atmospheric CO2 typically enhances photosynthesis of C3 plants and alters primary and secondary metabolites in plant tissue. By modifying the defensive signaling pathways in host plants, elevated CO2 could potentially affect the interactions between plants, viruses, and insects that vector viruses. R gene-mediated resistance in plants represents an efficient and highly specific defense...

متن کامل

Super-elevated CO2 interferes with stomatal response to ABA and night closure in soybean (Glycine max).

Studies have shown stomatal conductance (g(s)) of plants exposed to super-elevated CO2 (>5000micromol mol(-1)) increases in several species, in contrast to a decrease of g(s) caused by moderate CO2 enrichment. We conducted a series of experiments to determine whether super-elevated CO2 alters stomatal development and/or interferes with stomatal closure in soybean (Glycine max). Plants were grow...

متن کامل

The Combination of Trichoderma harzianum and Chemical Fertilization Leads to the Deregulation of Phytohormone Networking, Preventing the Adaptive Responses of Tomato Plants to Salt Stress

Plants have evolved effective mechanisms to avoid or reduce the potential damage caused by abiotic stresses. In addition to biocontrol abilities, Trichoderma genus fungi promote growth and alleviate the adverse effects caused by saline stress in plants. Morphological, physiological, and molecular changes were analyzed in salt-stressed tomato plants grown under greenhouse conditions in order to ...

متن کامل

Molecular and biochemical protective roles of sodium nitroprusside in tomato (Lycopersicon esculentum Mill.) under salt stress

Salinity stresses act as inhibitor factors of plant growth. They can change the physiological characteristics and limit the production of crops. Sodium nitroprusside (SNP) is a stable free radical which use as a signalling molecule in plants and participates in various plant’s physiological, biochemical and molecular processes and also in plant’s responses to environmental stresses. We investig...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 66  شماره 

صفحات  -

تاریخ انتشار 2015